240 research outputs found

    Ruthenium-catalyzed cascade C-H activation/annulation of N-alkoxybenzamides : reaction development and mechanistic insight

    Get PDF
    A highly selective ruthenium-catalyzed C-H activation/annulation of alkyne-tethered N-alkoxybenzamides has been developed. In this reaction, diverse products from inverse annulation can be obtained in moderate to good yields with high functional group compatibility. Insightful experimental and theoretical studies indicate that the reaction to the inverse annulation follows the Ru(ii)-Ru(iv)-Ru(ii) pathway involving N-O bond cleavage prior to alkyne insertion. This is highly different compared to the conventional mechanism of transition metal-catalyzed C-H activation/annulation with alkynes, involving alkyne insertion prior to N-O bond cleavage. Via this pathway, the in situ generated acetic acid from the N-H/C-H activation step facilitates the N-O bond cleavage to give the Ru-nitrene species. Besides the conventional mechanism forming the products via standard annulation, an alternative and novel Ru(ii)-Ru(iv)-Ru(ii) mechanism featuring N-O cleavage preceding alkyne insertion has been proposed, affording a new understanding of transition metal-catalyzed C-H activation/annulation

    Silver(I) triflate-catalyzed protocol for the post-ugi synthesis of spiroindolines

    No full text
    A silver(I) triflate-catalyzed protocol for the post-Ugi synthesis of tetracyclic spiroindolines has been developed. The protocol worked best for indole-3-carbaldehyde-derived Ugi adducts obtained using anilines and 3-aryl propiolic acids. Thus, it is complementary to the previous cationic gold-catalyzed procedure that was developed for analogues Ugi substrates derived from aliphatic amines and 3-alkyl propiolic acids. Furthermore, we have demonstrated that under our new settings this domino Friedel-Crafts ipso cyclization / imine trapping process could be efficiently combined with the preceding four-component Ugi reaction into a two-step one-pot transformation

    Heterogeneously Catalyzed Synthesis of Imidazolones via Cycloisomerizations of Propargylic Ureas Using Ag and Au/Al SBA-15 Systems

    Get PDF
    The synthesis of imidazolones through the cycloisomerization of ureas, specifically propargylureas, has gained attention due to the large availability of starting materials. However, this type of synthesis normally requires the utilization of strong bases, such as NaOH, expensive homogeneous metal catalysts, such as Ag-, Au-, and Ru-based systems, or toxic and hazardous chemicals. Herein, a study of different synthetic routes for the preparation of imidazolones through the cycloisomerization of propargylic ureas under fast, mild, and environmentally friendly conditions with heterogeneous catalysis was undertaken. First, the synthesis were carried out under mild conditions using toluene and acetonitrile as solvents. Silver and gold nanoparticles supported on AlSBA-15 were used as heterogeneous catalysts. The catalysts were prepared by mechanochemical and microwave-assisted techniques. Sequentially, a range of solvents was replaced by the greener ethanol. Finally, all obtained results were combined in order to carry out the reaction using only water as solvent and promoter of the reaction. Aiming to expedite the procedure, the synthesis were carried out under conventional and microwave irradiation

    Post-Ugi Cyclization for the Construction of Diverse Heterocyclic Compounds: Recent Updates

    Get PDF
    Multicomponent reactions (MCRs) have proved as a valuable tool for organic and medicinal chemist because of their ability to introduce a large degree of chemical diversity in the product in a single step and with high atom economy. One of the dominant MCRs is the Ugi reaction, which involves the condensation of an aldehyde (or ketone), an amine, an isonitrile, and a carboxylic acid to afford an α-acylamino carboxamide adduct. The desired Ugi-adducts may be constructed by careful selection of the building blocks, opening the door for desired post-Ugi modifications. In recent times, the post-Ugi transformation has proved an important synthetic protocol to provide a variety of heterocyclic compounds with diverse biological properties. In this review, we have discussed the significant advancements reported in the recent literature with the emphasis to highlight the concepts and synthetic applications of the derived products along with critical mechanistic aspects

    Going with the µFlow: Reinterpreting Energy Input in Organic Synthesis

    Get PDF
    The popularity of microflow chemistry has skyrocketed in the last 20 years, more and more chemists are switching from macro-batch reactors to miniaturized flow devices. As a result, microfluidics is paving its way into the future by consolidating its position in organic chemistry not only as a trend but as a new, effective, and sustainable way of conducting chemistry, that clearly will continue to grow and evolve. This perspective highlights the most relevant examples of innovative enhancing technologies applied to microflow reactors aimed to improve and intensify chemical processes. The extensive applicability of microflow chemistry is further illustrated by briefly discussing examples of complex integrated microsystems and scale-up technologies, demonstrating ultimately that microflow chemistry has the potential to become the ideal technology for the future

    Rapid microwave heating and fast quenching for the highly efficient production of long-term stable supported Ag nanoclusters

    Get PDF
    Given the exciting potential of metallic clusters in a variety of fields, the development of novel preparation methods to accurately controlling the cluster size has become a research priority. Specifically, for catalytic applications, the synthesis and deployment of metallic nanoclusters on a proper substrate is perhaps the main bottleneck. Here, we have adopted an alternative reactor that uses simultaneous ice cooling and microwave heating (unlike water ice is a low microwave absorber) for the synthesis of Ag nanoclusters directly over a support with ordered mesopores (SBA-15). The reactor design exploits the selectivity of microwave heating, assuring a rapid localized nucleation followed by a nearly instantaneous quenching that largely avoids the aggregation of nascent clusters as well as Ostwald ripening mechanisms. We have compared this new synthesis approach with some previously reported methods for the production of supported silver nanoclusters: conventional batch reactor and also a continuous flow microreactor. The resulting Ag clusters were initially analyzed in terms of size distribution, textural properties and catalytic activity in the reduction of 4-nitrophenol. Finally, encouraged by the good results obtained, these nanoclusters were also employed in the production of different cyclic organic compounds, building blocks for pharmaceutical and photochemical applications. The nanoclusters displayed a high catalytic activity, lowering the metal loading required to achieve high yield and selectivity. Furthermore, the stabilization of the clusters over the mesoporous substrate allowed their reuse in several reaction cycles. In fact, the method produced exceptionally stable Ag clusters, whose catalytic properties were preserved even after one year of storage

    Three-Component Reaction of 3-Arylidene-3H-Indolium Salts, Isocyanides, and Alcohols

    Get PDF
    A novel isocyanide-based multicomponent synthesis of alkyl aryl(indol-3-yl)acetimidates has been established. Starting from aryl(indol-3-yl)methylium tetrafluoroborates, aromatic isocyanides and alcohols, the imidates were obtained in moderate to very good yields. Consecutive four-component synthesis of the above mentioned imidates from N-alkylindoles, aromatic aldehydes, aromatic isocyanides and alcohols was also proposed. In addition, it was shown that in the presence of water, aryl(indol-3-yl)methylium tetrafluoroborates reacted with isocyanides to furnish aryl(indol-3-yl)acetamides

    Doebner-type pyrazolopyridine carboxylic acids in an Ugi four-component reaction

    Get PDF
    Substituted 1H-pyrazolo[3,4-b]pyridine-4- and 1H-pyrazolo[3,4-b]pyridine-6-carboxamides have been synthetized through a Doebner–Ugi multicomponent reaction sequence in a convergent and versatile manner using diversity generation strategies: combination of two multicomponent reactions and conditions-based divergence strategy. The target products contain as pharmacophores pyrazolopyridine and peptidomimetic moieties with four points of diversity introduced from readily available starting materials including scaffold diversity. A small focused compound library of 23 Ugi products was created and screened for antibacterial activity
    corecore